Skip to main content

Örneklem Büyüklüğü Hesaplayıcı Anketler için güven aralığını, hata payını ve nüfusu temel alarak gerekli örneklem büyüklüğünü hesaplayın.

Örneklem Büyüklüğü Hesaplayıcı illustration
🔢

Örneklem Büyüklüğü Hesaplayıcı

Anketler için güven aralığını, hata payını ve nüfusu temel alarak gerekli örneklem büyüklüğünü hesaplayın.

1

Güvenilirlik Düzeyini Ayarla

İstediğiniz güvenilirlik düzeyini seçin (örneğin, %95).

2

Parametreleri Girin

Hata payı, nüfus büyüklüğü ve beklenen oranın ayarlayın.

3

Örneklem Büyüklüğünü Görüntüle

Gerekli örneklem büyüklüğünü hesaplama detayları ile görün.

Loading tool...

What Is Örneklem Büyüklüğü Hesaplayıcı?

Örneklem Büyüklüğü Hesaplayıcısı, istatistiksel olarak geçerli bir anket veya çalışma için kaç tane katılımcıya veya gözlemeye ihtiyacınız olduğunu belirler. Güvenilirlik düzeyi (ne kadar emin olmak istediğinizi), hata payı (kabul edilebilir hata aralığı), nüfus büyüklüğü (çalışılan toplam grup) ve beklenen oran (öngörülen sonuç yüzdesi) gibi faktörleri dikkate alır. Hesaplayıcı, bir population büyüklüğü sağlandığında sınırlı population düzeltmesi ile standart örneklem büyüklüğü formülünü kullanır. Bu araç, araştırmacılar, pazarlamacılar ve anketler veya deneyler tasarlayan herkes için önemlidir.

Why Use Örneklem Büyüklüğü Hesaplayıcı?

  • Sonlu nüfus düzeltmesi ile standart istatistiksel formül
  • %80'den %99.9'a kadar çoklu güvenilirlik düzeyleri
  • İsteğe bağlı nüfus büyüklüğü için sonlu nüfus ayarlaması
  • Z-puanı ve tüm hesap parametrelerini gösterir

Common Use Cases

Pazar Araştırması

Müşteri memnuniyeti veya ürün araştırması için anket büyüklüğünü belirleyin.

Akademik Araştırma

Tez araştırması veya bilimsel çalışmalar için örneklem büyüklüğünü hesaplayın.

Kalite Kontrol

İmalat süreçleri için denetim örneklem büyüklüklerini belirleyin.

Kamuoyu Anketleri

Seçimler veya politika araştırmaları için anket örneklem büyüklüklerini planlayın.

Technical Guide

Sonsuz nüfus için örneklem büyüklüğü formülü: n₀ = (Z² × p × (1-p)) / E²'dir, burada Z güvenirlilik düzeyi için z-skorudur, p beklenen orandır (maksimum için 0.5) ve E hata payıdır. Sınırlı nüfuslar için düzeltme uygulanır: n = n₀ / (1 + (n₀-1)/N), burada N population büyüklüğüdür. Z-skorları: 80% → 1.282, 90% → 1.645, 95% → 1.960, 99% → 2.576'dir. p = 0.5 kullanmak en muhafazakar (en büyük) örneklem büyüklüğünü verir. Sınırlı population düzeltmesi, örneklemenin nüfusun %5'inden fazla olduğu durumlarda önemli hale gelir.

Tips & Best Practices

  • 1
    Beklenen orandan emin değilseniz p = %50 kullanın - bu en büyük örneklemi verir
  • 2
    Güvenilirliği ikiye katlamak örneklem büyüklüğünü ikiye katlamaz - ilişki doğrusal değildir
  • 3
    Hata payını yarıya indirerek gerekli örneklem büyüklüğü dört kata çıkar
  • 4
    100.000'den fazla nüfus için sonlu düzeltme minimal etkiye sahiptir

Related Tools

Frequently Asked Questions

Q İyi bir örneklem büyüklüğü nedir?
Bu, gereksinimlerinize bağlıdır. %95 güvenilirlik düzeyiyle %5 hata payı için büyük bir nüfus için yaklaşık 385 yanıtlayıcıya ihtiyacınız vardır. Daha küçük hata payları daha büyük örneklemeleri gerektirir.
Q Hangi güvenilirlik düzeyini kullanmalıyım?
%95, araştırmalarda en yaygın standarttır. Eleştirel kararlar veya tıbbi araştırma için %99 kullanın. Önleyici veya keşif çalışmaları için %90 yeterli olabilir.
Q Nüfus büyüklüğü önemli mi?
Büyük nüfuslarda (>100.000), gerekli örneklem büyüklüğü neredeyse değişmez. Sonlu nüfus düzeltmesi, yalnızca nüfusun önemli bir bölümünü örnekleme aldığınızda önemlidir.
Q Hata payı nedir?
Hata payı, gerçek nüfus değerinin beklendiği aralıktır. %5'lik hata payı, sonuçların rapor edilen değerden ±%5 sapabileceğini anlamına gelir.
Q Neden beklenen oranda %50 kullanmalıyım?
%50 kullanmak gerekli örneklem büyüklüğünü maksimize eder ve örnekleminizin gerçek sonuca bakılmaksızın yeterli olduğundan emin olmanızı sağlar. Makul bir tahmine sahipseniz, bunu kullanarak gerekli örneklemi azaltabilirsiniz.

About This Tool

Örneklem Büyüklüğü Hesaplayıcı is a free online tool by FreeToolkit.ai. All processing happens directly in your browser — your data never leaves your device. No registration or installation required.